A theory for how sensorimotor skills are learned and retained in noisy and nonstationary neural circuits.
نویسندگان
چکیده
During the process of skill learning, synaptic connections in our brains are modified to form motor memories of learned sensorimotor acts. The more plastic the adult brain is, the easier it is to learn new skills or adapt to neurological injury. However, if the brain is too plastic and the pattern of synaptic connectivity is constantly changing, new memories will overwrite old memories, and learning becomes unstable. This trade-off is known as the stability-plasticity dilemma. Here a theory of sensorimotor learning and memory is developed whereby synaptic strengths are perpetually fluctuating without causing instability in motor memory recall, as long as the underlying neural networks are sufficiently noisy and massively redundant. The theory implies two distinct stages of learning--preasymptotic and postasymptotic--because once the error drops to a level comparable to that of the noise-induced error, further error reduction requires altered network dynamics. A key behavioral prediction derived from this analysis is tested in a visuomotor adaptation experiment, and the resultant learning curves are modeled with a nonstationary neural network. Next, the theory is used to model two-photon microscopy data that show, in animals, high rates of dendritic spine turnover, even in the absence of overt behavioral learning. Finally, the theory predicts enhanced task selectivity in the responses of individual motor cortical neurons as the level of task expertise increases. From these considerations, a unique interpretation of sensorimotor memory is proposed--memories are defined not by fixed patterns of synaptic weights but, rather, by nonstationary synaptic patterns that fluctuate coherently.
منابع مشابه
An Information-Theoretic Discussion of Convolutional Bottleneck Features for Robust Speech Recognition
Convolutional Neural Networks (CNNs) have been shown their performance in speech recognition systems for extracting features, and also acoustic modeling. In addition, CNNs have been used for robust speech recognition and competitive results have been reported. Convolutive Bottleneck Network (CBN) is a kind of CNNs which has a bottleneck layer among its fully connected layers. The bottleneck fea...
متن کاملSensitivity Derivatives for Flexible Sensorimotor Learning
To learn effectively, an adaptive controller needs to know its sensitivity derivatives--the variables that quantify how system performance depends on the commands from the controller. In the case of biological sensorimotor control, no one has explained how those derivatives themselves might be learned, and some authors suggest they are not learned at all but are known innately. Here we show tha...
متن کاملStudying sensorimotor integration in insects.
Sensorimotor integration is a field rich in theory backed by a large body of psychophysical evidence. Relating the underlying neural circuitry to these theories has, however, been more challenging. With a wide array of complex behaviors coordinated by their small brains, insects provide powerful model systems to study key features of sensorimotor integration at a mechanistic level. Insect neura...
متن کاملA Convolutional Neural Network based on Adaptive Pooling for Classification of Noisy Images
Convolutional neural network is one of the effective methods for classifying images that performs learning using convolutional, pooling and fully-connected layers. All kinds of noise disrupt the operation of this network. Noise images reduce classification accuracy and increase convolutional neural network training time. Noise is an unwanted signal that destroys the original signal. Noise chang...
متن کاملDeafening Drives Cell-Type-Specific Changes to Dendritic Spines in a Sensorimotor Nucleus Important to Learned Vocalizations
Hearing loss prevents vocal learning and causes learned vocalizations to deteriorate, but how vocalization-related auditory feedback acts on neural circuits that control vocalization remains poorly understood. We deafened adult zebra finches, which rely on auditory feedback to maintain their learned songs, to test the hypothesis that deafening modifies synapses on neurons in a sensorimotor nucl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 110 52 شماره
صفحات -
تاریخ انتشار 2013